全国服务热线:17721208078
18201803950
360体育直播在线观看 Success Case
联系我们 Contact us

南开大学Nature!复旦大学Nature!上海交通Scienc

时间: 2024-04-27 08:46:07 发布人: 新闻中心

  近日,Nature发文报道南开大学在光电催化水分解制氢领域取得的联合研究进展;Nature发文报道复旦大学的基于高分子凝胶电解质的高性能纤维电池;Science发文报道上海交通大学在天然单晶石墨烯中实现了量子反常霍尔效应,为实现量子反常霍尔这一重要物理效应提供了新思路和新的技术路线。

  北京时间4月24日晚,国际顶级学术期刊《自然》(Nature)杂志在线发表南开大学电子信息与光学工程学院罗景山教授课题组与英国剑桥大学、瑞士洛桑联邦理工学院团队在光电催化水分解制氢领域取得的联合研究进展。

  该研究题为“High carrier mobility along the [111] orientation in Cu2O photoelectrodes”。团队基于溶液电化学外延生长技术制备了三种不同取向的单晶氧化亚铜(Cu2O)薄膜,结合飞秒瞬态反射光谱量化分析了Cu2O各向异性光电特性,并基于分析结论开发制备了以[111]为主要晶体取向的多晶Cu2O光电极,实现了光电催化制氢性能的突破。

  氢能具有零碳、绿色、单位体积内的包含的能量高等优点,对实现碳达峰碳中和目标具备极其重大意义。今年,氢能产业首次作为前沿新兴起的产业被写入《政府工作报告》,是发展新质生产力的重要方向之一。

  氢能产业全面崛起的重点是降低绿氢制备成本。光电催化水分解技术能将间歇性的太阳能直接转化为氢能,是一种极具潜力的可再次生产的能源技术。Cu2O作为天然p型半导体,具有原材料储备丰富、制备方法简便、较窄的带隙以及合适的能级位置等优点,是高效廉价光电催化制氢电极的“明星”材料。

  在提高Cu2O光电催化性能方面,光生载流子分离和传输效率的提升是关键。目前学界对于Cu2O体相内载流子的复合过程研究较少。

  为了揭示不同晶体取向对Cu2O体相内载流子复合的影响机制,南开大学罗景山教授团队联合英国剑桥大学Samuel D. Stranks教授团队、瑞士洛桑联邦理工学院Michael Grätzel教授和Anders Hagfeldt教授团队,采用溶液电化学Cu2O薄膜外延生长技术,成功制备出[111]、[110]和[100]晶体取向的单晶Cu2O光电极。

  随后,团队分析了不同晶体取向Cu2O电极的光电特性,结果显示单晶Cu2O沿[111]晶向的载流子迁移率、电导率和载流子扩散长度都相对更优,展现出相对更大光电流密度。

  图 a 电化学外延生长装置;b单晶外延层在Si衬底上的x射线衍射图和由EBSD生成的极图(c),反射以圆圈突出显示;晶体取向为(100) (d)、(110) (e)和(111) (f)的15 nm 单晶Cu2O薄膜的瞬态反射光谱;g 模拟太阳AM1.5 G光照下传统多晶Cu2O和[111]取向增强多晶Cu2O光电阴极[poly-Cu2O (111)]的电流密度-电压响应曲线 V (vs. RHE) 下稳定性测试及产氢法拉第效率。

  基于分析结果,团队成功制备出具有高纯度[111]晶体取向的多晶Cu2O光电极,展现了[111]方向电子特性的优势,最终将Cu2O光电极0.5 V (vs. RHE) 时的光电流密度提升至7 mA cm−2 (相对之前电沉积光电极提高70%)。

  此外,团队还探究了不同晶向及相应暴露截止面对Cu2O光电极稳定性的影响,揭示了[111]晶向和(111)晶面截止暴露面赋予了Cu2O光阴极更加优异的稳定性。

  据介绍,该成果创新性地开发了溶液电化学外延生长制备单晶Cu2O薄膜技术,量化分析了不同晶面取向Cu2O薄膜的光电特性,揭示了不同晶向光电特性对体相载流子复合的影响行为。

  基于此发现,团队通过逐渐增强多晶Cu2O光电极的[111]晶向,刷新了平板Cu2O光阴极光电催化性能。

  这些发现为氧化物在光伏、晶体管、探测器以及太阳燃料等领域的改性提升提供了一种广泛适用的策略。

  南开大学为该项工作的通讯单位之一,电子信息与光学工程学院罗景山教授为该论文的共同通讯作者。

  是否能够最终靠设计纤维结构获得柔软的锂离子电池?如何制备高单位体积内的包含的能量的纤维锂离子电池?怎样实现高安全性纤维锂离子电池?作为能源领域的一个全新研究方向,纤维锂离子电池在发展过程中面临着以上三个难题。

  经过十多年探索,彭慧胜团队相继攻克了前两个难题。然而,高分子凝胶电解质难以与纤维电极形成紧密稳定的接触界面,导致纤维锂离子电池储能性能非常低。因此,解决第三个难题的重点是,要解决高分子凝胶电解质与纤维电极界面不稳定的难题。

  彭慧胜团队围绕这一问题开展攻关,但前沿研究不免遇到质疑。“最开始的研究动机就是基于个人兴趣,而非随波逐流。我们没模仿任何参考文献,而是选择没有参考文献的全新领域,放手去做。”在彭慧胜看来,做研究就要有创新、有突破。

  突破的关键,源于对自然的观察与思考。某天,彭慧胜访问中国科学院上海硅酸盐研究所,注意到爬山虎可以紧密而稳定地缠绕在另一根植物藤蔓上。他细心察看,回去后查阅资料,了解爬山虎与被缠绕的植物藤蔓“如胶似漆”的秘密:爬山虎能分泌出一种拥有非常良好浸润性的液体,渗透到两者接触表面的孔道结构中,使液体中的单体发生聚合反应,将爬山虎和被缠绕的植物藤蔓粘在一起。其中,孔道结构是实现重要生物功能的普适策略。

  学习自然,超越自然。受此启发,团队同时设计了具有多层次网络孔道和取向孔道的纤维电极,并设计单体溶液,使之渗入到纤维电极的孔道结构中。单体发生聚合反应后,生成高分子凝胶电解质,从而与纤维电极形成紧密稳定的界面,进而实现高安全性与高储能性能的兼顾。

  更进一步,团队发展出基于高分子凝胶电解质纤维电池的连续化制备方法,实现了纤维电池的规模制备。

  基于连续化制备方法,团队实现了数千米长度纤维锂离子电池的制备,其单位体积内的包含的能量达到128瓦时/公斤,实现5C大电流供电,可有效为无人机等大功率用电器供电。高性能纤维电池具备优秀能力的耐变形力,在经历10万次弯折变形后容量保持率大于96%。

  通过自主设计关键设备,团队建立了纤维电池中试生产线瓦时的产能。这相当于每小时生产的电池可同时为20部手机充电。目前,该成果的中试物料成本约为每米5角;纤维电池直径最细仅为约500微米。

  团队成员展示了一款集成了纤维锂离子电池制作的可充电手提包:“手机放在这个包里面就能充电,半小时左右,手提包能给一部正常手机充进20%到30%的电量。”未来,团队还将尝试进一步集成纤维太阳能电池并与纤维锂离子电池结合,使衣物、包等日常穿戴物品可利用自然能源直接充电,更加环保高效。

  彭慧胜认为,这一研究思路拥有非常良好的普适性,可应用于不一样的材料体系纤维电池的制备,得到的纤维电池均显示出稳定的充放电性能。团队努力让制备过程高度可控,得到的纤维电池电化学性质拥有非常良好的一致性,为进一步大规模应用提供支持。

  他们使用工业编织方法,制备了大面积纤维电池织物,并系统研究了织物的安全性。对于典型的50 cm×30cm大小的电池织物,容量可达到2975毫安时,与常用手机电池相当,可满足多种设备的用电需求。

  为了更直观地展示纤维锂离子电池的应用潜力,团队率先试制了一款可充电概念背包,其在变形、水洗、强紫外照射后仍能稳定供电。“经过洗衣机100次洗涤及10000次摩擦实验后,电池性能基本未受影响,”彭慧胜介绍,“在高低温、机械破坏等极端条件下有良好的安全性,并能够顺利工作,即使剪断一部分也能有效供电。”

  团队还进一步制作了多功能消防服,在模拟高温火场的环境中,电池织物在即使被磨损剪断后仍没发生着火、爆炸等安全事故,并能稳定地为对讲机、传感器等随身设备供电,也可以将特殊衣物在几分钟内加热到60℃。相关成果还有望应用于极地科考、航空航天等领域。

  “纤维电池的应用场景拥有非常广阔的想象空间,比如应用于软体机器人、虚拟现实设备等等。希望我们的这些尝试可以为其他科研团队提供一些经验。”彭慧胜说。

  复旦拥有非常良好的基础学科和基础研究优势,如何让源头创新成果变成有用的技术、产品和商品,走出一条具有复旦特色的发展路径,是十多年来彭慧胜带领团队一直试图回应的问题。

  “目前产线上的核心零配件,都是我们自己设计和定制的。”接下来,他希望能与业界加强合作,邀请专业厂商参与打造生产线,逐步提升新型纤维锂离子电池性能,同时减少相关成本,推动纤维电池的广泛应用。

  该论文是彭慧胜团队在高性能纤维电池研究领域发表于《自然》(Nature)的第三篇成果。彭慧胜为该论文通讯作者,复旦大学高分子科学系博士后路晨昊、博士研究生江海波、博士研究生程翔然为共同第一作者。研究得到科技部、国家自然科学基金委、上海市科委等项目支持。

  量子反常霍尔效应是凝聚态物理中重要的物理现象,是低能耗高速电子器件和拓扑量子计算的候选物理基础之一,但在实验上实现的难度极大。石墨烯在量子反常霍尔效应的理论发展历史中起到了关键作用。早在1988年,美国物理学家F. Haldane基于简单的石墨烯晶格作为“玩具模型”(toy model),在理论上施加了复杂的空间分部磁场,提出了可以在此模型中实现零磁场下的量子霍尔效应,即量子反常霍尔效应。因这项工作,Haldane与另外两位科学家分享了2016年诺贝尔物理学奖。尽管如此,在实验上,找到满足“玩具模型”的真实材料十分艰难。受到实验发现石墨烯的启发,理论物理学家预言如果在石墨烯中引入足够的自旋轨道耦合,将会出现拓扑物态,即量子自旋霍尔效应。很快,大家意识到,实现量子反常霍尔效应的材料需要同时具备两个条件,即同时具有拓扑和磁性。值得一提的是,量子反常霍尔效应在实验上的首次发现,是由中国科学家薛其坤团队在2013年在磁性元素掺杂的拓扑绝缘体薄膜中实现。迄今为止,具有量子反常霍尔效应的材料屈指可数,包括磁性掺杂的拓扑绝缘体、具有本征磁性的拓扑绝缘体MnBi2Te4以及二维莫尔超晶格。这些材料的制备都需要苛刻的实验条件和复杂的实验流程,在自然界并不存在。尽管石墨烯在相关理论发展的过程中起到了及其重要的作用,但在天然石墨烯晶体中,始终没取得实验上的突破。

  石墨晶体由单层石墨烯以密堆积的形式一层层堆垛而成。由于石墨烯晶格的对称性,存在三个堆垛位置,命名为A、B、C位。因此,多层石墨烯具有多种不同的堆垛方式,例如三层具有ABA和ABC两种堆垛方式,四层具有ABAB、ABCA和ABCB三种堆垛方式。其中,ABCA堆垛形式又被称为菱方堆垛,是一类理论上具有电子平带和强关联的特殊堆垛石墨烯。天然石墨晶体中存在不同堆垛方式的石墨烯,其中菱方堆垛的石墨烯以亚稳态形式广泛存在。

  课题组前期开发了一套独具特色的针对高质量菱方堆垛石墨烯的器件制备和表征方法,并成功在ABCA四层石墨烯中观测到由于强关联效应导致的多个自发磁性物态,包括层间反铁磁绝缘态、准自旋极化金属态等(Nature Nanotechnology 19, 188-195, 2024)。基于前期工作,小组成员创新性的将菱方石墨烯与另外一种二维材料——二硒化钨(WSe2)结合在一起,从而将WSe2中的自旋轨道耦合成功引入到石墨烯中,进而带来了拓扑的性质。结合菱方石墨烯本身具备的自发磁性,使得实现量子反常霍尔效应的两个条件,拓扑与磁性,同时存在于石墨烯中。

  实验上,课题组利用常见的透明胶带,将天然石墨晶体减薄到几个原子层厚度,并利用自主搭建的扫描近场红外显微镜,在特定厚度的四层石墨烯中,找到存在菱方堆垛结构的区域。进而,利用原子力显微镜针尖当作“纳米剪刀”,将菱方堆垛区域的石墨烯“裁剪”出来,将其与WSe2一起封装到二维绝缘体hBN中间,使得结构得以稳定存在。最后,利用微纳加工的方法,将菱方石墨烯制备成场效应管原型器件,并对样品进行低温电输运的测量。

  在电输运测量中,团队发现,由于极强的电子相互作用,通过对垂直电场的调控,石墨烯会连续展现出具备不同磁性的绝缘态。在电场为零的时候,石墨烯展现出层间反铁磁绝缘态,即上下表面的电子以自旋相反的方式自发有序排列;在电场较大的时候,石墨烯表现为层间极化绝缘态,即所有电子被电场极化到一个表面;而当电场处于以上两个绝缘态中间值的时候,没有WSe2的样品展现出半金属行为,而有WSe2的样品展现出了非常大的霍尔信号,并伴随有电滞回线成功地将自旋轨道耦合引入到石墨烯中。

  进一步,通过对中间电场态的深入测量,团队发现菱方石墨烯此时展现出了磁滞回线这一典型的铁磁行为,并且在零磁场下有非常大的霍尔信号。通过施加磁场,团队最终证实,这个中间态是陈绝缘态,展现出量子反常霍尔效应。有趣的是,这个系统的陈数(表征拓扑序的指标)为4,与石墨烯的层数相等,且理论上,更厚的石墨烯的陈数应始终与层数相等,这是目前实验上发现的最大陈数的体系。同时,团队还发现,石墨烯的铁磁性不但可以被磁场调控,还可以被电场和载流子浓度调控,展现出很丰富有趣的多重调控性。

  此项工作表明,尽管石墨烯结构相对比较简单,但却能为探索前沿的拓扑物态和研究拓扑相变开辟新的道路。另一方面,天然石墨作为广泛存在的自然晶体,可以大幅度降低研究拓扑物理和未来多通道拓扑量子计算的门槛和成本。

  论文共同第一作者为上海交通大学物理与天文学院的沙亚婷、郑健和刘凯三位博士研究生,通讯作者为陈国瑞副教授,论文合作者还包括上海交通大学的钟瑞丹副教授和研究生杜红、史志文教授、贾金锋教授,以及日本国立材料研究所Kenji Watanabe研究员和Takashi Taniguchi研究员。此项研究的器件加工部分在上海交通大学物理与天文学院微纳加工平成,本工作得到国家重点研发、国家自然科学基金委和上海交通大学的资助。

上一篇:【48812】欢迎保藏!2021年胶带股票概念有哪些?

下一篇:首次实现!上海交大最新《Science》!

[返回上级]